Breaking the Vigenère Cipher

An Introduction to Cryptography

What is Cryptography?

- Sharing secret messages with math
- Primarily used to keep your internet traffic safe
- Some common encryption standards
 - o RSA
 - AES
- Encryption should be easy to do, but decryption should be hard
- We will examine and break two **ciphers** today
 - Caesar
 - Vigenère

What is Cryptography?

- Sharing secret messages with math
- Primarily used to keep your internet traffic safe
- Some common encryption standards
 - RSA
 - AES
- Encryption should be easy to do, but decryption should be hard
- We will examine and break two **ciphers** today
 - Caesar
 - o Vigenère

Atbash Cipher

UMass Amherst => FNzhh Znsvihg

FNzhh Znsvihg => UMass Amherst

this is a problematic cipher => gsrh rh z kilyovnzgrx xrksvi

Atbash Cipher

UMass Amherst => FNzhh Znsvihg

FNzhh Znsvihg => UMass Amherst

this is a problematic cipher => gsrh rh z kilyovnzgrx xrksvi

Letter in **plaintext**: abcdefghijklmnopqrstuvwxyz Letter in **ciphertext**: zyxwvutsrqponmlkjihgfedcba

The Game

- Alice wants to send a message to Bob, but Eve is listening in
- How can they get around this?

The Game

- Alice wants to send a message to Bob, but Eve is listening in
- How can they get around this?
 - Alice can garble the text in some way that
 Bob can undo it
 - Atbash Cipher! Swap every letter with its opposite, a with z, b with y...
 - But Eve can immediately figure it out

The Game

- Alice wants to send a message to Bob, but Eve is listening in
- How can they get around this?
 - Alice can garble the text in some way that
 Bob can undo it
 - Atbash Cipher! Swap every letter with its opposite, a with z, b with y...
 - But Eve can immediately figure it out
 - Alice tells Bob a secret key to add complexity to the message
 - This is a key idea in modern cryptography

More on Keys

CYBERSEC

CLUB

- A value that helps us secure messages
- Symmetric key encryption
 - Used in most ciphers and AES
 - Same key for encrypting and decrypting
 - Shared secretly before communication
- Asymmetric key encryption
 - Used in RSA and Diffie-Hellman Key Exchange
 - Alice makes a pair of keys
 - Public key used to send encrypted messages to Alice
 - Alice keeps private key to decrypt messages
 - Public key is like a "lock"
- Anyone can put a lock on their message, but only Alice
 can decrypt it

Caesar Cipher

- Used by Caesar to communicate with his officers
- The key is a "shift"
- We apply the shift to each letter to encrypt it
- We shift each letter backwards by our key to decrypt
- Let's try an example!

Encrypt Caesar Cipher Example

- Handy wheels invented after Caesar let us encrypt and decrypt quickly
- From the outer wheel to the inner wheel
- Shift = 17 (a \rightarrow r, b \rightarrow s, ...)
- Non-alphabetic characters?

plaintext	q	u	i	С	k	b	r	0	W	n
ciphertext										

Encrypt Caesar Cipher Example

- Handy wheels invented after Caesar let us encrypt and decrypt quickly
- From the outer wheel to the inner wheel
- Shift = 17 (a \rightarrow r, b \rightarrow s, ...)
- Non-alphabetic characters?

plaintext	q	u	i	с	k	b	r	0	W	n
ciphertext	h	I	z	t	b	S	i	f	n	е

Decrypt Caesar Cipher Example

- To undo Caesar Cipher, we shift again
- Go from the inner wheel to the outer wheel
- To undo a shift of +17, we shift by -17
- This is the same as shifting by +9, since 17+9 = 26

plaintext										
ciphertext	Y	V	с	с	f	n	f	i	С	u

Decrypt Caesar Cipher Example

- To undo Caesar Cipher, we shift again
- Go from the inner wheel to the outer wheel
- To undo a shift of +17, we shift by -17
- This is the same as shifting by +9, since 17+9 = 26

plaintext	н	е	I	I	0	W	0	r	I	d
ciphertext	Y	V	с	с	f	n	f	i	С	u

Caesar's Favorite Number, Parts 1 and 2

Challenge time!

Experiment with the Caesar Cipher!

Try encoding and decoding the samples.

https://training.umasscybersec.org/

How Do We Break Caesar Cipher?

- Iterate over all possible keys
- There are only 26
- We can tell which is the correct one
- This a **brute-force attack**
- This type of attack will work for any Caesar Cipher

Break Caesar Cipher More!

- Is there any way of telling the computer which key should be right?
- What is your favorite Wordle starting word?

Break Caesar Cipher More!

- Is there any way of telling the computer which key should be right?
- What is your favorite Wordle starting word?
- One thing the Caesar Cipher does not hide is the **relative frequency** of different letters
- 'E' is the most common letter in the English alphabet
- If the shift is 3, 'H' will appear a lot in the ciphertext

Our Plan: Frequency Analysis

- Cycle through the 26 possible shifts
- Decrypt the ciphertext for each of those to get a candidate plaintext
- Assign each candidate a score, based on how often common letters occur
- Remember the best shift and the best score
- Return the best shift
- Use decrypt_caesar to reveal the plaintext!

```
def break_caesar(message: bytes) -> int:
 """
 Attempts to break the Caesar cipher by trying
 """
 best_score = 0
 best_shift = 0
 for shift in range(26):
     decrypted = decrypt_caesar(message, shift)
     score = 0
     score += score_message(decrypted)
     if score > best_score:
         best_shift = shift
     return best_shift
```


Caesar's Favorite Number, Part 3

Challenge time!

Crack the Caesar Cipher and uncover Caesar's letter!

How Can We Make Caesar Cipher Better?

- The vulnerability came from too few keys, only 26
- Idea: make every shift correspond to a letter
- Caesar cipher uses one character to encrypt
- We can add more security by making a longer key
- Multiple shifts for different letters
- Enter, the Vigenère Cipher, a polyalphabetic cipher
- We repeat the key as many times as necessary
- This makes our cipher much harder to break

How to Vigenère

UMASS

- Repeat the ciphertext as much as necessary
- Use the table to the right
- Ignore all non-alphabetic chars

plaintext	С	У	b	е	r	S	е	С
key	с	а	t	с	а	t	С	а
ciphertext								

Vigenère Cipher Table

Message Character

														-													
		А	В	С	D	E	F	G	н	I	J	к	L	М	N	0	Р	Q	R	5	Т	U	۷	W	х	Y	Ζ
	Α	Α	В	С	D	Е	F	G	н	I	J	К	L	М	N	0	Ρ	Q	R	5	Т	U	٧	W	х	Υ	Ζ
	в	в	с	D	Ε	F	G	н	I	J	к	L	м	Ν	0	Ρ	Q	R	s	т	U	v	W	х	Y	z	Α
	С	С	D	Е	F	G	н	I	J	к	L	м	N	0	P	Q	R	5	т	U	v	W	х	Y	z	Α	в
	D	D	E	F	G	н	Ι	J	к	L	м	Ν	0	Ρ	Q	R	5	т	U	v	W	х	Y	Z	A	в	C
	Е	Е	F	G	н	I	J	к	L	м	Ν	0	Ρ	Q	R	s	т	U	٧	W	х	Υ	Ζ	А	В	с	D
	F	F	G	н	I	J	к	L	м	Ν	0	Ρ	Q	R	s	Т	U	v	W	х	Y	Ζ	Α	В	C	D	E
к	G	G	н	Ι	J	к	L	м	N	0	Ρ	Q	R	5	т	U	v	W	x	Y	Z	Α	в	с	D	Е	F
e	н	н	I	J	к	L	м	Ν	0	Ρ	Q	R	5	т	U	v	W	х	Y	z	A	в	С	D	Ε	F	G
y	Ι	I	J	к	L	м	Ν	0	Ρ	Q	R	5	т	U	v	W	х	Y	Z	Α	В	с	D	Е	F	G	н
-	J	J	к	L	м	Ν	0	Ρ	Q	R	S	т	U	۷	W	х	Y	Z	A	В	С	D	Ε	F	G	н	Ι
с	к	к	L	м	N	0	Ρ	Q	R	5	т	U	v	W	х	Y	Z	Α	в	с	D	E	F	G	н	Ι	J
h	L	L	M	N	0	P	Q	R	s	Т	U	۷	W	x	Y	Z	Α	в	C	D	E	F	G	н	I	J	к
a	м	м	Ν	0	Ρ	Q	R	s	т	U	v	W	х	Υ	z	Α	в	с	D	Е	F	G	н	Ι	J	к	L
r	Ν	Ν	0	Ρ	Q	R	S	т	U	V	W	х	Y	Z	A	в	С	D	E	F	G	н	I	J	к	L	м
a	0	0	Ρ	Q	R	5	т	U	v	W	х	Y	Z	Α	в	с	D	Ε	F	G	н	Ι	J	к	L	м	N
c	Ρ	Ρ	Q	R	s	Т	U	v	W	x	Y	Z	А	в	с	D	E	F	G	н	I	J	к	L	м	N	0
t	Q	Q	R	5	т	U	v	W	х	Y	Z	Α	В	С	D	Е	F	G	н	I	J	к	L	м	Ν	0	Ρ
e	R	R	S	т	U	v	W	х	Y	Z	Α	в	С	D	Ε	F	G	н	I	J	к	L	м	Ν	0	Ρ	Q
r	5	5	т	U	۷	W	х	Y	z	Α	В	с	D	E	F	G	н	Ι	J	к	L	м	Ν	0	Ρ	Q	R
	т	т	U	v	W	х	Υ	Ζ	A	в	С	D	Ε	F	G	н	I	J	к	L	м	Ν	0	Ρ	Q	R	5
	U	U	v	W	х	Υ	Z	Α	В	С	D	Е	F	G	н	I	J	к	L	Μ	Ν	0	Ρ	Q	R	5	т
	v	v	W	х	Y	Z	Α	в	С	D	E	F	G	Н	I	J	к	L	Μ	Ν	0	Ρ	Q	R	5	Т	U
	W	W	х	Y	Z	Α	в	с	D	Ε	F	G	н	Ι	J	к	L	м	N	0	Ρ	Q	R	5	т	U	v
	x	х	Y	Ζ	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	Ρ	Q	R	S	Т	U	v	W
	Y	Y	Z	Α	В	с	D	Ε	F	G	н	I	J	К	L	M	N	0	Ρ	Q	R	s	Т	U	۷	W	x
10	Ζ	Ζ	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Ρ	Q	R	S	T	U	۷	W	x	Y

How to Vigenère

UMASS

- Repeat the ciphertext as much as necessary
- Use the table to the right
- Ignore all non-alphabetic chars

plaintext	С	У	b	е	r	S	е	С
key	с	а	t	с	а	t	С	а
ciphertext	е	У	u	g	r	I	g	С

Vigenère Cipher Table

Message Character

											1.1	10.5	200														
		Α	В	С	D	Ε	F	G	н	I	J	к	L	М	N	0	Р	Q	R	s	Т	U	٧	W	х	Y	Ζ
	Α	Α	в	С	D	Е	F	G	н	I	J	к	L	М	N	0	Ρ	Q	R	5	Т	U	v	W	х	Υ	Ζ
	в	в	с	D	Ε	F	G	н	I	J	к	L	м	Ν	0	Ρ	Q	R	s	т	U	v	W	х	Y	z	A
	С	С	D	Е	F	G	н	I	J	к	L	м	N	0	Ρ	Q	R	5	т	U	v	W	х	Y	z	Α	в
	D	D	Ε	F	G	н	I	J	к	L	м	N	0	Ρ	Q	R	5	т	U	v	W	x	Y	Z	A	в	C
	Е	Е	F	G	н	I	J	к	L	м	Ν	0	Ρ	Q	R	s	т	U	v	W	х	Y	z	Α	в	с	D
	F	F	G	н	I	J	к	L	м	Ν	0	Ρ	Q	R	s	т	U	v	W	х	Y	z	Α	в	С	D	E
к	G	G	н	I	J	к	L	м	N	0	Ρ	Q	R	5	т	U	v	W	x	Y	Z	A	в	с	D	Ε	F
e	н	н	I	J	к	L	м	Ν	0	Ρ	Q	R	s	т	U	v	W	х	Y	z	A	в	с	D	E	F	G
v	Ι	I	J	к	L	м	Ν	0	Ρ	Q	R	5	т	U	v	W	х	Y	Ζ	Α	в	с	D	Е	F	G	н
,	J	J	к	L	м	Ν	0	Ρ	Q	R	s	т	U	v	W	х	Y	Z	Α	в	с	D	Е	F	G	н	Ι
с	к	к	L	м	N	0	Ρ	Q	R	5	Т	U	v	W	x	Y	z	Α	в	c	D	E	F	G	н	I	J
h	L	L	M	N	0	P	Q	R	s	т	U	v	W	x	Y	z	Α	в	с	D	Ε	F	G	н	I	J	к
a	м	м	N	0	Ρ	Q	R	s	т	U	v	W	х	Υ	z	Α	в	с	D	E	F	G	н	I	J	к	L
r	N	Ν	0	Ρ	Q	R	5	т	U	v	W	x	Y	z	Α	в	с	D	Е	F	G	н	I	J	к	L	м
a	0	0	Ρ	Q	R	5	т	U	v	W	x	Y	Z	A	в	с	D	Е	F	G	н	I	J	к	L	м	N
c	P	Ρ	Q	R	5	т	U	v	W	х	Y	z	A	в	с	D	Ε	F	G	н	I	J	к	L	м	Ν	0
t	Q	Q	R	5	т	U	v	W	х	Y	z	Α	в	с	D	Ε	F	G	н	I	J	к	L	M	N	0	P
e	R	R	s	т	U	v	W	х	Y	z	Α	в	с	D	E	F	G	н	I	J	к	L	м	Ν	0	Ρ	Q
r	5	5	т	U	v	W	х	Y	z	Α	в	с	D	E	F	G	н	I	J	к	L	м	N	0	Ρ	Q	R
	т	т	U	v	W	х	Y	z	Α	в	с	D	Ε	F	G	н	I	J	к	L	м	N	0	Ρ	Q	R	5
	U	U	v	W	х	Y	z	А	в	с	D	Е	F	G	н	I	J	к	L	Μ	Ν	0	Ρ	Q	R	s	т
	v	v	W	х	Y	z	Α	в	с	D	E	F	G	н	I	J	к	L	M	N	0	Р	Q	R	5	т	U
	W	W	x	Y	Z	A	в	с	D	E	F	G	н	I	J	к	L	м	N	0	Ρ	Q	R	5	т	U	V
	x	x	Y	z	A	в	с	D	E	F	G	Н	I	J	K	L	M	N	0	Ρ	Q	R	5	т	U	v	W
	Y	Y	Z	Α	В	с	D	Е	F	G	н	I	J	К	L	М	N	0	Ρ	Q	R	s	Т	U	v	W	x
	z	z	Α	в	с	D	E	F	G	н	I	J	к	L	M	Ν	0	Р	Q	R	5	т	U	v	W	х	Y
1.1	-		-	-	1000	-			_		-	-	_				_	_	-			_					_

Take it for Granted, Parts 1 and 2

Challenge time!

Encrypt and decrypt the Vigenère Cipher!

https://training.umasscybersec.org/

How Do We Break Vigenère Cipher?

- We can reduce the problem to multiple Caesar ciphers
- Say we know the length of the key
- Then at regular intervals, it looks just like the Caesar cipher!
- Also, our same scoring technique works!
- We can build our key up from the individual chars of the Caesar cipher!

plaintext	С	У	b	е	r	S	е	С
key	С	а	t	С	а	t	с	а
ciphertext	е	У	u	g	r	I	g	С

Frequency Analysis for Vigenère

- This attack works best if we know the length of the key
- We break the ciphertext into segments

UMASS R CYBERSEC

- Each segment is made of characters from the message that we **encrypted with the same shift**
- We ensure this by choosing characters of the ciphertext every key length apart (3 for the previous example)
- We can break each segment with break_caesar!

```
def break_vigenere_with_key_len(message: bytes, key_len: int) -> bytes:
 message = [i for i in message if chr(i).isalpha()]
 key = bytearray()
 for i in range(key_len):
     segment = message[i::key_len]
     # TODO: find the best character for this segment and append it to ke
 return bytes(key)
```

Take it for Granted, Part 3

Challenge time! Break the Vigenère Cipher! (remember, the key length is 15) https://training.umasscybersec.org/

Now... some extra news!

Interested in Competing with us? Join CPTC2026!

Questions?

How do I learn more? How can I get involved? When are you guys available? Come Up & Ask!

Resources Posted in Discord

Plus: New Hacker Hours System!

Stay Tuned!

Newsletter

UM CY

Website

