
Client-Side
Web Exploitation:

Cross-Site
Scripting (XSS)

Disclaimer!
Don’t do this stuff without

explicit permission!

 XSS
 Cross-Site Scripting

Some Review…
● The web (generally) functions off of a Client Server Model

● We will be talking in terms of our browser being our client

Some Review…
● Typically, HTTP is used as the protocol to communicate

between servers and clients

Some Background…
● What happens when you request a webpage?
● (Typically) server sends a HTML page as a response, which

is rendered by your browser

Browser Requests Webpage

Server Sends HTML to Browser

Browser Renders HTML

Your Browser

● Client side code may also make additional
requests to retrieve content or add interactive
functionality
○ Mostly Javascript, but other languages are used (e.g. WASM).

Learn More: WASM

(Pretend this is a gif)

https://webassembly.org/

What is Javascript? How does our
Browser use it?
● The core language of websites

and the browser (what your
console uses)
○ Make extra web requests, add

behavior to HTML elements, & more!

● Javascript can be run in a
browser with HTML script tags or
event handlers

● Interpreted language
● Can also load via files

HTML Demo

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_default

What is XSS?

Attacker makes a user run malicious browser-side
code, typically scripts injected into trusted website

- Most often Javascript

e.g. Self-Retweeting Tweet

<script>alert(“You’ve been hacked!”)</script>

<svg onload=alert(“You’ve been hacked!”)>

More on:
Self-Retweeting Tweet
XSS

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dzv0kZKC6GAM&psig=AOvVaw13G9fG2je8_f8j7oSWepqQ&ust=1739314190675000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCJiQuLWYuosDFQAAAAAdAAAAABAI
https://portswigger.net/web-security/cross-site-scripting

This code is running on our server. Why is this bad?
- (How can we get code execution?)

from flask import Flask, request, redirect

app = Flask(__name__)

@app.route("/")

def index():

 user_input = request.args.get('name')

 if (user_input is None):

 return redirect("?name=hacker", code=302)

 return f"<h1> Good Evening {user_input}</h1>"

Discuss with
your table!

training.umass
cybersec.org

FLAG: UMASS{I_L0V3_X5S}

http://training.umasscybersec.org
http://training.umasscybersec.org

Forms of XSS

Reflected XSS

- Data from HTTP request included in
response (“Reflected” back to user)

Stored XSS

- XSS Payload stored by server and sent to
user

DOM XSS

- Intended Client-Side Javascript processes
user input in unsafe way resulting in XSS

INSERT WITTY IMAGE
HERE

Reflected XSS

● Potentially dangerous user input is directly inserted into the HTML w/out
processing

● Example:

● Any time the user visits our link with the parameters they will have the
Javascript run on their client

● Common for phishing-like attacks

BABY XSS

Time for your first challenge!

Try to get any popup to show!

https://training.umasscybersec.org/

https://training.umasscybersec.org/

Stored XSS

● User input is somehow stored on
the server, which is then sent back
to a victim user without need for
further input

● Example: A post containing a
payload is created on X (formerly
known as Twitter) which is
executed every time the attacker’s
posts are viewed

○ Victim’s client
retrieves payload
stored on the server
when viewing the post

Document and Window - Javascript Objects!

document - Object that holds all other objects loaded on web
page - basically the contents of your tab.

- e.g. cookies, images, forms, & other elements
- We used document.getElementById() earlier

window - Object that represents an open window in a
browser - basically your tab itself.

- Is the root of your browser - the global object.
- Document is a property of window.
- Other properties like location (i.e. webpage’s URL)

- Javascript variables are stored in the window object.
- Don’t need to write “window.[property]” to access properties

- i.e. console.log(foo) = console.log(window.foo)

https://www.w3schools.com/js/js_htmldom_document.asp
https://www.w3schools.com/jsref/obj_window.asp

DOM XSS

● DOM XSS is when user input is
processed incorrectly, resulting in
XSS.
○ Often results in payload being written to

the DOM

● Javascript has unsafe functions that
you should never use!
○ These are known as XSS sinks

● Example:
○ A website has code that calls

document.write(user_input)
○ The user input will be written to

the page as HTML code!

Some Bad Javascript Functions

document.write(message) - Text will directly written
to the document meaning it store anything you put
as HTML

document.writeln(message) - Same as above

element.innerHTML - Sets the html of an element to
whatever the user supplies!

element.outerHTML - Same issue as innerHTML

element.onEvent - Will execute javascript code
depending on the event. Event handlers can also be
passed through HTML

Document Object Model (The

Document, basically)

https://developer.mozilla.org/en-US/docs/Web/API/Document/write
https://developer.mozilla.org/en-US/docs/Web/API/Document/writeln
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/outerHTML
https://developer.mozilla.org/en-US/docs/Web/Events/Event_handlers

XSS Cheat Sheet
alert(message) - create a popup to the user with whatever value you
put as message

fetch(URL) - makes a request to the URL and returns the response
document - a Javascript object that holds all of the other objects
loaded on the web page

document.cookie - an object that lets us read and write cookies to
the document

https://webhook.site/ - Free website you can send requests to in
order to monitor them

Extra Tip: Script tags are only run the first time a web page is loaded.
Use event handlers if your payload is only retroactively added.

Include a URL

Parameter to

Exfiltrate Info!

https://www.w3schools.com/jsref/met_win_alert.asp
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://www.w3schools.com/js/js_htmldom_document.asp
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
https://webhook.site/

BAD-SEARCHER & NOTETAKER

More Challenges!

Try Bad-Searcher first, then Notetaker

You have source this time.

https://training.umasscybersec.org/

https://training.umasscybersec.org/

Mitigations

Avoid Sinks

- Avoid displaying, processing user input wherever possible!

Safe Sinks

- eg. elem.textContent = userval; document.createElement(userval);
- Wrap variables in quotes when passing to functions, e.g.

<script>alert('$userval’)</script>

Sanitization

- <script type="text/javascript" src="src/purify.js"></script>
- elem.innerHTML = DOMPurify.sanitize(userval);

Learn More: XSS Prevention

Sink Definition:

- A point in a program where
user-supplied data is processed

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Mitigations

CSP
- Content-Security-Policy
- Controls what resources a document is allowed to load. Commonly used to

restrict Javascript resources.

- Considered defense-in-depth approach, bypassable case-by-case, e.g.
through DOM XSS

Learn More: CSP

Only allows resources from the same origin as the document AND disallows inline
execution. (No user-supplied code). Images can also come from example.com.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

One Day You will be Employed

Where might you see XSS in the real world?

APIs

oh my god the APIs

Here is a (recreation of a) reflected XSS vulnerability I saw in
the real world.

https://training.umasscybersec.org/

https://training.umasscybersec.org/

Where can you practice more?

Portswigger Labs

CTFs

- Our CTFs, MinutemanCTF & UMassCTF
- Year-Round CTFs like PicoCTF

Last week’s LACTF Mav Fan and Purell
challenges are good advanced XSS challenges!

https://portswigger.net/web-security/all-labs

Questions?
How do I learn more?

How can I get involved?
When are you guys available?

Come Up & Ask!
Resources Posted in Discord

Newsletter Discord Twitter Website

