
How 2 Debug?
A Dive into Debugging Hardware

● PCBs were getting more advanced
○ multi-layer circuit boards
○ ICs w/ BGA and similar mounting technologies were becoming standard

● Connections between ICs couldn’t be probed
● Boards would fail due to bad solder connections going unnoticed

Some History - 1980

Some History - 1985
● Group was formed to create testing standard

○ Created Joint Test Action Group (JTAG)
○ Used to interact with pins in an IC (boundary scan)

■ Can test connectivity without physical access
○ Very simple state machine
○ Pretty specific function

Some History - 1990
● Became official standard

○ IEEE Std. 1149.1-1990
● Intel released first CPU with JTAG (80486)

○ Lead to widespread adoption
● 1994: Boundary scan description language was

added
○ Standardized testing pins on different IC packages

Some History - Now
● JTAG has become a ubiquitous protocol found on many IC’s
● Many variations

○ Serial Wire Debug (SWD)
○ Compact JTAG (cJTAG)

● Used to access submodules
○ Provides simple way to get access to core functions at first instruction

● Many extensions that add functionality
○ ARM’s CoreSight: processor core debug
○ Nexus: Vendor independent debugging

interface
○ Uploading firmware

JTAG
● Test Access Point(TAP)

○ Finite State Machine
○ 2 Registers

■ IR: Controls the
“instruction”/register that DR uses

■ DR: Used to give/take data
○ Very simple primitive to write to many

registers
○ Required registers

■ ID (IDCODE)
■ Boundary Scan Register (BSR)

● SAMPLE
● PRELOAD
● EXTEST
● *INTEST

■ Bypass Register (BR)

JTAG State Machine
● Controlled via TMS and TCK pins
● Can always reach reset by setting

TMS high 5 times
○ Can be used to synchronize multiple

state machines in JTAG chain

Example: Setting all pins high
Initial reset state

Example: Setting all pins high
TMS 1 → Idle

Example: Setting all pins high
TMS 1 → Select DR

Example: Setting all pins high
TMS 1 → Select IR

Example: Setting all pins high
TMS 0 → Capture IR

● Shift register stores prev IR

Example: Setting all pins high
TMS 0 → Shift IR

● Shift values in/out of shift
register
○ Get prev IR
○ Store new IR (PRELOAD)

Example: Setting all pins high
TMS 1 → Exit 1 IR

● Shift register contains
PRELOAD instruction value

Example: Setting all pins high
TMS 1 → Update IR

● Store shift register in IR

Example: Setting all pins high
TMS 1 → Select DR

Example: Setting all pins high
TMS 0 → Capture DR

● Shift register stores prev DR

Example: Setting all pins high
TMS 0 → Shift DR

● Shift values in/out of shift
register
○ Get prev DR (data out)
○ Store new DR (data in)

Example: Setting all pins high
TMS 1 → Exit 1 DR

● Shift register contains all 1 (pin
high)

Example: Setting all pins high
TMS 1 → Update DR

● Store shift register into DR

Example: Setting all pins high
We also need to set IR to EXTEST

Debugging with JTAG (ARM)
Terminology - Debug Port (DP), Access Port (AP), Debug Access Port (DAP)

Everything is registers!

Debugging with JTAG (ARM) - Special JTAG instructions
● Each instruction corresponds to 35 bit DR
● 0b1000 (ABORT): Interrupt current AP transaction and give control back to

debugger (extreme!)
● 0b1010 (DPACC): Debug port access register

■ Used to control CTRL/STAT and SELECT registers
● 0b1011 (APACC): Access port access register

■ Used to read and write to the selected register in the access port

R/W of DPACC/APACC

Debugging with JTAG (ARM) - CTRL/STAT
Control and status information about the DP

● [31] RO CSYSPWRUPACK System power-up acknowledge
● [30] R/W CSYSPWRUPREQ System power-up request
● [29] RO CDBGPWRUPACK Debug power-up acknowledge
● [28] R/W CDBGPWRUPREQ Debug power-up request
● [27] RO CDBGRSTACK Debug reset acknowledge
● [26] R/W CDBGRSTREQ Debug reset request
● [25:24] - - Reserved, RAZ/SBZP
● [23:12] R/W TRNCNT Transaction counter
● [11:8] R/W MASKLANE Indicates the bytes to be masked in pushed compare and pushed verify operations
● [7] RO WDATAERR Set if a Write Data Error occurs
● [6] RO READOK This bit is set to 1 if the response to the previous AP or RDBUFF read was OK
● [5] RO STICKYERR Set if an error is returned by an AP transaction
● [4] RO STICKYCMP This bit is set to 1 when a match occurs on a pushed compare or a pushed verify operation
● [3:2] R/W TRNMODE Transfer mode for AP operations: 00 = Normal operation, 01 = Pushed verify operation, 10 = Pushed

compare operation, 11 = Reserved.
● [1] RO STICKYORUN Overrun error flag
● [0] R/W ORUNDETECT This bit is set to 1 to enable overrun detection

Debugging with JTAG (ARM) - SELECT
Select AP to interact with

[31:24] APSEL Selects the current AP (AHB-AP, APB-AP, JTAG-AP)

[23:8] - Reserved

[7:4] APBANKSEL Select the active four-word register bank on the current AP

[3:0] - Reserved

Debugging with JTAG (ARM) - Memory AP
MEM-AP register Address Register bank Offset (A[3:2])

Control/Status Word 0x00 0x00 0b00

Transfer Address Reg 0x04 0x00 0b01

Data R/W 0x0C 0x00 0b11

Banked Data 0 0x10 0x01 0b00

Banked Data 1 0x14 0x01 0b01

Banked Data 2 0x18 0x01 0b10

Banked Data 3 0x1C 0x01 0b11

ConFiguration Reg 0xF4 0x0F 0b01

BASE 0xF8 0x0F 0b10

IDentification Reg 0xFC 0x0F 0b11

Debugging with JTAG (ARM) - CoreSight
BASE Register

● Usually points to ROM table
○ Used by CoreSight to store information

about debug components
○ Can point to more ROM tables contains

more debug information
○ Debugger can find all debugging

capabilities by traversing ROM tables
○ Flexible debug components with various

features
■ Flash breakpoint (FPB)
■ Embedded Trace Macrocell (ETM)
■ Embedded Cross Trigger (ECT)

Hardware Debugging Advantages - Developer
● Faster and more controlled debugging

○ Hardware breakpoints are faster and allow for masking
○ Traces get real time data without slowing down system

■ Embedded Trace Macrocell: All instructions
■ Program Trace Macrocell: All changes in program flow

○ Watchpoints
● Access to specific buses and sub-components
● Lightweight

Hardware Debugging Advantages - Attacker
● Runs below any software

○ No software protections can stop it*
○ Can get around software protections

■ EDR Evasion with Hardware Breakpoints: Blindside Technique
● Impossible to deactivate unless specific hardware security measures are

implemented
○ Extra cost to implement

https://cymulate.com/blog/blindside-a-new-technique-for-edr-evasion-with-hardware-breakpoints/

Hardware Debugging Disadvantages
● Requires specific hardware

○ Expensive
○ If not implemented, no debugging :(

● Requires physical access
○ Out of luck if JTAG/SWD pins are not exposed

● Limited abilities
○ Ex: Can only set ~16 watchpoints vs ∞ software breakpoints

Security
● E-fuses

○ Can be checked at boot to enable bootloader/software debug access
○ Can use voltage glitching to trick processors while booting

● Trustzone
○ Create trusted zones and protections that limit the effectiveness of

SWD
● Secure Enclave / Coprocessor

○ Authentication is done in another processors which generates/relays
SWD signals

Practical Example
It didn’t work :(

NECCDC Applications open soon!

If you’re interested in blue teaming, this is a
competition where you defend a simulated
corporate network against industry
professional hackers!

● Fill out our interest form!
● Application materials will be released next

week.

Interest form

Join us for MinutemanCTF!
Where?

LGRC A112
When?

Oct 17 @ 6:00 PM

Want a challenge?

Want to see industry and professor panels?

Come play MinutemanCTF!

Questions?
How do I learn more?

How can I get involved?
When are you guys available?

Come Up & Ask!
Resources Posted in Discord

Newsletter Discord Twitter Website

